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s ABSTRACT A
e
Using a general method for deriving identities for random variables, i
:5'::' find a number of new results involving characteristic functions and
:i?: generating functions. The method is simply to promote a parameter In
7:::3 an integral relation to the status of a random variable and then take
e expected values of both sides of the equation. Results include formulias
é?tjé for calcuiating the characteristic functions for x2, /x, 1/x. x2 + x, R2 =
“ x2 + 42 etc. ir terms of Integral transforms of the characteristic
;:é‘ functions for x and (x, y), etc. Generahizations to higher dimensiaons can
E%i o2 obtained ysing the same method. Expressions for inverse/fractional
R moments, £int}, etc. are 31so presented, demaonstrating the metnod,
'.“::" L MTECOUCTION
e

A 5 well known, 1t 1S sometimes easier to study a process us:ng
508
'2 ‘~ansfarms of the relevant probability distributions. Such transtorms
%,
Sih“ 2 gdes the characteristic function, Clw), and the momant generating
‘T function, M), for general random variables: the probability generating
E "onetion, Gz, for integer valued random variables, and the Laplace
{, % -
sod *r3rstore of the orababrltty density function, £Ls), for non-negative
“." va.ied random variaties. They often aliow cne to 1) simplify
3{ man:puwialions invaiving convoiutions of probabiiity distribulions arsing
}'::'* Yo consigeration of sums of random variabies ang more Comp:iCated
R !
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compound and branching processes, and 2) apply powerful methods from
complex analysis and integral transform theory ta the solution of
differential=-difference eguations which arise 1n the study of probability
and stochastic processes, and in the analysis of the analytic behavior of
those solutions. The value of techniques for manipulating such
transiorms and of "methods for constructing new characteristic
functions out of given ones”! is well known. In fact, the theory of
probability "depends to a large extent on the method of characteristic
functions'?. The methods presented here may further aid in the
interpretation of complicated characteristic functions and factiitate the
rdentification of independent processes which contribute to the result
tsee e.q. reference [3]). Apart from their usefulness 1n probabilistic
applications, our results also provide another means of generating new

intagral identities from old ones.

Sy bromating a parameter inan integral expression Lo the status of a
rancdom variabie (r.v.) and then taking expected values of bath sides of
the equation, 3 number of Interesting relations invalving characteristic
fynctions, generating functions, etc. are found. In generai, while there
13 Nno guarantee that the resulting integrals can be evaiuatec In Ciused
Tarm Tor 3 particular distribution of interect, the expression may be
ne:pful in numerical work. An analogous technique for generating
aienlities nvodving operators in Hiibert space, matrices, elC. nas been
sty empioysd in Dhysics (eq. see the Appendix, below,. in the

orababitity context simriar methods have fong been usea to sotve

srablerms oy averaging conditional results over the conditinning variable.




X A number of identities are presented in Sections Il - V demonstrating
tre method of derivation. Some examples of calculations using these
v ) ilentities are then carried out in Section VI. Finally, in Section VII we

comment on the generahity of the method.

Reiations involving the Square of R. V. s

ot A. Consider the well-known integral expressing the normalization of 3

. Normal (aka Gaussian) distribution, in which x is an arbitrary constant,
Wy 00
fexpl -(£ - x)2/(2¢2) ] d€ = 1.

0 e ST o?)

Zrange var:ables according to, &  --> £/(2%). 1/(202) --> i%, and

Rl dxtal
2oudin,

1) =

R

oy lexp[=122/(4%) + 1ix 1 d =  expl 1¥x¢]. {
I J(-14m¥)

Now Dromnte x to De a real random variable and take expected values of

ay Kottt siges of the equation, assuming that the implicit interchange of

« rizrs of integration 1s justified, i.e. that [ and E{ } commute,

N 00

JEi/(an®) 1 [expl-i£2/(4¥)] C (8) a = Cu2(¥) . (2)

Q‘..ﬁ ) - 00

s . ZooNow myitipig B4 07 by itseif with s -->y, £ --2 6 T -5 to

Sotain,

l-'..\ 3
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00

) fexpl-182/(4%) + i&x -i€2/(48) +ieyl dfde = expl 1¥x2 + 18y? ] .
o e [ -14/(%5) ]

N Aga:n consider x, y tobe r.v.'s and take expected values of both sides,

i/[an/(¥8) | [ [expl-i&2/(4%) -i€2/(45)] Cy,y(E.€) dEde (3)
el )

By = Cy2 y2(%.8) .

N0 [T we now let § = ¥ we have,

R 0

& i/[4E] [ [expl-i(§2 + €2)/(49%)] Cy y(&.€) dEde (4)

— 00

= CR2(3).

4 - N . el . - )
Wy where- RE = %2+ w2 This can be generalized further to 3 or more r.v.'s

a0 ‘M an analogous manner.

% - "Multinly Eq. (1) by exp( 13x) and take expected vaiues to obtain the

‘.'; Zharacteristic function for X2 + X,

JUI/An¥) | [expl-iE2/(4B)N C(E + ¥) 0 = Cy2,4(3) . (9)
ay o

e Adain, it is clear that this may de generatized further.
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{11, ldentities for /x and 1/x

A, Consider the definite integral (e.g. reference (€] p. 341),
(0]

(exp [ -a/&2 -bE2 1 df = JIm/(4b)] exp(-2/(ab)] . (6)

cet a --> « b -->s2/4 to obtain the identity,

{exp [ -x/82 -5282/4 1 a8 = /(1) /s expl-sv/x] . (7)
3
Now, promote x t0 be a non-negative r.v. ang average over x, to obtain

the Laplace transform of the pdf of /X,

s/ | exp [-5282/4 1 2,(1/E2) dE = 2 s (s) . (8)

0

Alternatively, a similar integral on p. 399 of reference [6] allows one to

express & 7, (s) 1n terms of the characteristic function, Cy .

2. To abtain the Laplace transform of the pdf for therv. !/x, 1.6

£, qven &, . consider the integral'®,

[expl -al T dg(o/8)de = 173 expl - p¥/(42) 1.

Muiteplu Doth sides Dy a and change the parameters b --> LS, 3 ==~ x|

the iatter 3 non-negative rov., Lo obtain,

q
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[v]

CEfxexpl -xE 1} Jgl 2/(s8) 1d8 = Efexpl - s/x 11,
0

in terms of the Laplace transform, this is.

() [ (&) - Jol 2/(SE) 1 dE = 2 /,(s). (9)

iv. Identities for Non-Standard Moments and Averages

A, Consider the elementary integral, where x is just a parameter,

oo

n_

1S exp (xslds = (n-1) /K

0

Naw promate x to be a non-negative r.v., whose pdf falls off sufficiently

rap.diy as x -=> G, (e.g. an Eriang(n+1) ) and take expected values » L x,

-1 [ sl 2.(s)ds = E(1/x") (10a)

Jetting ¥ -=> (x + A) leads immediately to the identity,

€4
4 <

o tin-iil [ 50T expi-sAY @ (s) dz = E(1/(x+A (i0b)

%

ot U

W iqent ities for the Laplace transform could aiso be written in terms of
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the moment generating function, when it exists. Analogous results for
tne moment generating function were also derived in references [4], and
(1 using methods similar to the above. Those references also contain

acgditional app tions of this result.

2. Consider. now, the integral.

(o)

2 fespl-at?at = J(n/a), (11)
3

el 2 --> X, 3 non-negative r.v., and take expected values,

00 (-]
2/ [ C(it2) dt = 2/ m [2,(t2) dt = E{(1//x) (12)
0 0
Making the change of variable toy = t2in £q.(12) results in,
LSRR NI VYN
T7is Can be recognized as a fractiona! integration of arder 1/2 of the

L3nace transform (or MGF). Some of the other moments In this section

T2To3.25 e written as fractionai integro-different:ations of moment
JRCEr3T.I T Unclions Or Laplace transforms. This fact, as well as other

3. & ENIIONS CanG re.ated references) are discussed inreferences (7 - 31,
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S. Muitiply £q. (1) by a, iet a --> x and 3verage, t¢ obtamn,

o

2/ Elxexpl-xtZiat = E(VX),
0
or, switching to moment generating functions instead of Laplace
transforms for this result (either could be used here),

2/¥m [ M-t dt = E{/xl (13)
0

This can be generalized to optain a formula for €f xM* 172} with m an

integer. 1n a straightforward manner.

L. Consider Lipschitz’s mtegral‘D for the ordinary Bessel function of

zerath Jrder, Jo.
A

Cenpl -3s | dglbs) ds = 1/(a? + b2).

Promote 3 --> X, @ non-negative random variable and take expected

‘31.eS 27 Doth sides 1o abtain,

f 2,(s) Jolbs) ds = E{ 1//(x2 + b?) }. (14)
0

Successively differentiating tnis identity wrt the parameter b produces

3 family 2 simiiar identities.
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E. Consider one form of Bessel's integral for the nth order arainary

:

Bessel function'o,

s

dalx)d = 1/(27) [ expl -n1 8+ 1 xsin6 | g6,

-

&)

12 X D@ ar.v. and average over all %, to obtain,
18
E{ Jn(x)} = 1/(27) f expl -n i 6 ] C,(sine) do. (15)
-7

_ie f”lg tnis resyit Can be generalized inmany ways, and s somewnat

reminiecart of the well-known formyla,

£y HQe

Viviion|

Hlw) Cx.(_w) dw,

~Tere =i 15 tne Fourter transform of H(x). The latter equation can. in
rre gpirit of this paper, be simply derived by taking expected vaiues of «

= *me ~acracentaton of H(x) as the Fourier Transform of Hixw

27 ties for Probability Generating Functiong

- JIreiZer agamn the weil-known integral ysed to Cefime the Zamres:
TN, Tme
Toealsziaz = o/ e

Sal tad don Bos Lo ot Ao
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Trrs time let N be a non-negative integer valued random variable ard

2Varage over n,

i . ﬁ
gk | G(z)expl -szldz = E{n1/ s} (16) '
- 0

e [ Lart.cuiar, when's = 1 this yields £ ni b when it exists, ie. the
gL Lab 3T transtorm Of the probabiity generating function, evaluateg at
ni b (cf. the factoriat marments E{nin-1)(rn-k+1); =

E 271z (D -2 ) For non-integer r.v.’s we can obtain a corresponding

S. Consider the :ntegral,

U - - -
"y o ae N

o wwe =t ooDe 3 non-negative integer valued rov. and average,

Enin [ 6(z)dz = E{1/(n+1) ), (17)
0

w4
(]

P

~7.77o3isc follows easily from the power sertes definition of 5{Z) and i<

(lll
LA Ay
LN

= r
P

S v
K

2ty analogous to the usual result for Elnj.

(s

s % Tw

LrsiZer tne integral expressing the standard resuit for the even

aaa

'y %

et s of tne Normal distribution,




o0
¥y [ 22N expl -22/(20?) 1@z = (2n- i oM,
¢
¥ e J(2mo?)
' where the double factorial symbol means, e.g., S!f = 3-3-1. Again take
-2_"‘ averages over n on both sides of the equality,
3
M)
s o
¢
., [ 6(z2)expl -z2/(2g2) 1dz = E{(2n- 1)1 02N}, (18)
l4 _
; ° /(2x0?)
: and when o = | we have E{ (2n - 1)il }.
‘ D. Cons:der the two Integrals, found on p. 369 of reference (6],
! /2
: [ isn2eide = /2 - (2m - D/ (2mt
‘ 0
.
‘ ard.
.'
v /2
D
\J
B [ singlsin®6lMde = (2m) / (2m + 1)l
P

o

;i
:2 Latting m be ar.v. and averaging over ait values of m on each sige of the
. above equations, we obtain,
. /2
A .
$ 2/7t [ G6(sin20)de = E{(2m - 1)1/ (2m)n}, (19)
: 0
4 and,
i’g,
' R
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n/2

oy fsine G(sinf@)doe = E{(2m)1/ (2m + 1)1 }, (20)
:
g respectively.

Vi, Some Applications of the ldentities

A, 1f x has a Normal distribution with zero mean then
N C (&) = exp{-£202/2).
oy Putting this 1n Eq. (2) and performing the integration, we have,

tigeh)) 00

4
sz(Z)

JU/ATE) ] [expl~182/(4%) - £202/2 1 df, .

-00

o /(1 - 210%%). (21)

This is, indeed, recognized as the characteristic function for the X2
--..z,%.i distribution with one degree of freedom. (Similarly, if x, y have
i independert normal distributions with the same value of the variance,
tnat R? = X2 + Y2 has a negative exponential distribution follows

‘roviglly from EqQ. (4).)
Now, let x have a Normal distribution with non-zero mean, u, then

e C (L) = expl 1pd - £202/2). )

o Subst tuting this in Eq. (2) and integrating, yields,

N y vy & &
DDA MO AT NN NS OB MIDULN AR M SR NN
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Py - o
PR

[v9}

N C2(¥) JUi/ans) 1 fexpl 1uf - 182/(4%) - £202/2 1 dC .

~00

/(1 - 210%%) expl 1p23/(1 - 2102%) ), (22)

o which 15 the characteristic function of an offset X< distribution.

2 B. Calcuiate £{1/V/x } where x has an exponential distribution with

parameter A. In this case the characteristic function of x 1s,
C 0 = M- ).

)

i

it Hence, sybstituting this in £q. (12) we have,

b

o] 00

¢ ~

£ s/l i at = 2/ M(n - 13 at
) g 0

ard, using a standard integral, we obtain,

b3 El//x} = I, (23)

" Th1s 15 eastly verified to be correct by a direct calculation. E{ v'x 1 1s

e 21e2 easily verified to be the result produced by Eq. (13).

.‘,: 2. Insert tne Laplace transform of the pdf for an exponentiai

h‘ gistripution, A/(A + s), into Eq. (14), abtaining,

o0

o ECI/A/(x2+b2)) = [ A(A+s): Jolbs) ds .
Wi 0

13
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This integral is tabulated on p. 685 in reference (6], resulting in,
EC1//(x2+b2) ) = XA 7/2 [ Hg(DA) - Ng(bA) 1. (24)

where Hqy and Ny are Struve and Neumann functions, respectively, of
zeroth arder (Ngy can be replaced with Yg, the Bessel function of the
* second kindj). For example, takingb =4 and A = 1 ( Hg(4) = .13501and

Yal4) = -.01694 )% we find for the exponential distribution,

E(1//(x2+02)} = 2387, ,
which is eastly confirmed by direct Gauss-Laguerre integration of the

) left-hana-side.

J. We now calculate the average of the n'N order Bessel function when x
has a N(0, o) distribution with the use of Eq. (15). After inserting the
characteristic function for a normal distribution, using the trig identity

Ha
b

a = (! -co0s26)/2, and again using Bessel's integral identity, this

mime for I 5. Eq. (15) leads to,

e

EL X)) = expl -02/4 1 - 1y /5(0%/4), (25)

o e =

“ar 0 even, and zero when n is 0dd. This expression can be confirmed by

evaivating the expected value directly with the help of an integrai

' tabulatec on p. 710 of reference [6].
t. Let G(z) be the generating function for a Poisson distribution,

: 3(z) = expln (z- 11

14

WEL L b v g L) (W , e s Ox
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Putting this in Eq. (16) and integrating yields,

‘ - Elni/s™T) = 1/(s-n) expl-n) (26)
" and, in particular, whens = 1,

i E{ntd = 1/(0-n)-expl-n].

ﬁ This 15 eastly verified to be correct, as well as the fact that for a

¥

! Poisson distribution E{ n! } is only finite for n < 1.

.: E. If we substitute the generating function for a Poissonr.v. into

%)

b £q.(18) and perform the integration, we easily obtain (letting o = 1),

k)

¢ _ — —

' Elen-Du) o= 12/ -2n ) -expl-n ). (27)
. Clearly, this is finite only for n < 1/2.

. G, Agan using the generating function for a Poisson r.v., Eq. (20) yields.
. after using a trigonometric identity for sin26 and Bessel's integral

N

"; rapresentation for the Bessel function of zeroth order,

: EC(2mit/ (2m « D} = expl -n /2 ) Jpli 0 /2)

L)

=expl -n /2115 n/2), (28)

where {n 1S the modified Bessel function of zeroth order.

15
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ke VIil. Conclusion

some of the foregoing integral identities involving characteristic

& functions and generating functions may be derived or verified ustng other

5‘ methods. For example, | originatly obtained Eq. (2) by expanding C,2(3) .
a N @ Mclaurin series, replacing the derivatives wrt ¥ by even order

';é qerivatives of C, (&) wrt &, and re-summing the infinite sertes. That

o

derivation, which reltes on the existence of ail moments, 15 presented in

4 the Append!x. Similariy, the expression for E{1/(n + 1)} follows eas!ly
;.‘:E‘ from integrating, term by term, the infinite series definition of G(z). In
'_,‘ fact, expressions for fractional and/or inverse moments, including sone
' of those derived In Section IV, have been expressed eisewhere?8:9 in 3
'5 unified manner in terms of fractional integro-differentiations of the

MGF, generalizing the usuai formulas for moments and factorial

i':!g moments.

i

. However, alternate derivations are not readiiy tdentified for ali of our
S

'.: 'ntegral refations. The point 1s, that by presenting our unified treatment
N

-;: LIontatning as a proper subset some of the previausly mentioned

s formalisms) 1t becomes straightforward to obtatn new integral

'.' ‘Zentities for random variables by 2 judiClous search of tables of

h)

hy

'y imtegrals such as reference [6]. As a final example. a somewhat

f. gratuitous result 1s obtained by consideration of integral no. 3 on p. 304
p)

" in reference (6],

K

A

i (L8]

K A ,

4 | expt -pt) /[1 +expl-qt) 1 dt = m/qcosecipm/ql, q>p >0,

)

A -0 or q<p<0.

RO o (i OO DLl 4 Ol RS ‘ '5-"&.‘&"!‘ .. -., E o



Ltet ¢=1, p->x,ar.v.inthe interval [0, 1] and average over x,
=

VT MGty /0« exp(-t) 1at = E{ cosec [mrx] ). (29)
-Co
It 15 clear that many other integral identities for random variables can
be gererated In the same manner. The only requirement is that the

impiicit interchange of orders of integration be justified.
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APPENDIX

In this appendix an alternate derivation of EqQ. (2) i1s presented, patterned
after that inreference [3) in which 1t 1s applied to help 1n the
interpretation of a complicated characteristic function and identify
independent processes which combine to form the final process. The

usual definition for the characteristic function yields,
C &) = E{exp(ix)}. ana  C,2(¥) = E{exp(izx?) }. (A1)
we soive the problem: given C, , to find C2 . First, note that the even

moments of x can be expressed alternatively as,

172 (/a8 M C D) | pzg = ELxEM),
or (A2)
(121 {0/a¥) N Cal®) | =g = E(x2")

1.2 the Ihs of these two expressions are equal, assuming the moments

e<:St.

'We can ncw write the ordinary Mclaurin series for C,2 as.

00

SRR R > (/1 (d/d¥") m C_\(Z(b")lz(':o G /m! (AT
m=0

which car: fe rewrittenusing Egs. (A2) as,

L8 = ZEHa/a8)2 1M C ()] pog ()T /mi (A4)

19
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Mext, re-sum this power series in (d/df)? to obtain,

Ce2(®) = exp {-i¥ (0/a0)? } C(8)]p-g

Now, note that,

(AS)

expl 0Aa/dx)2 } f(x) = 1//(2m0?) | exp{ -(x - x)2/(262) 1(x’) ox’,

which can be verified using the convolution theorem of Fourier

transforms. This equation could also have been obtained directly from

£q. (1) f we promote x to be the gperator d/dx, instead of a r.v., and

then post-multipiy by f(x). Making the change of variables x --> £,

2 --> -21%, and setting £ = 0 we recover £q. (2).
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